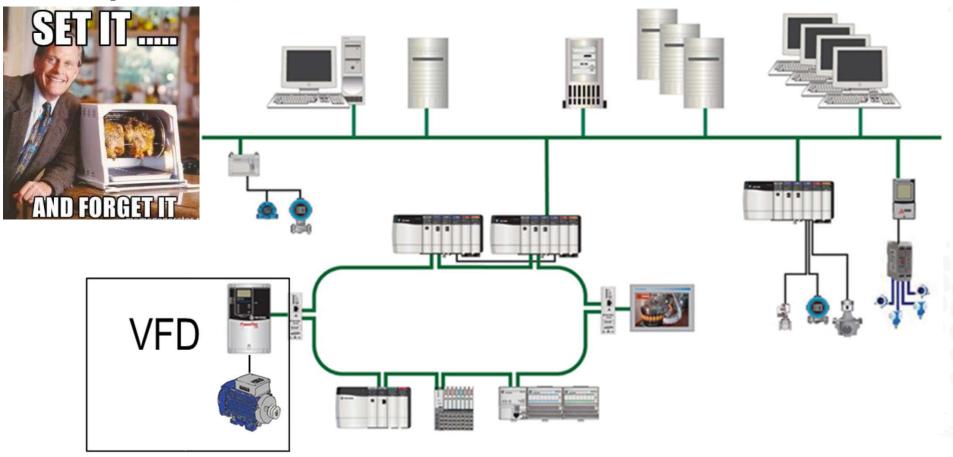


Rockwell Automation Resources

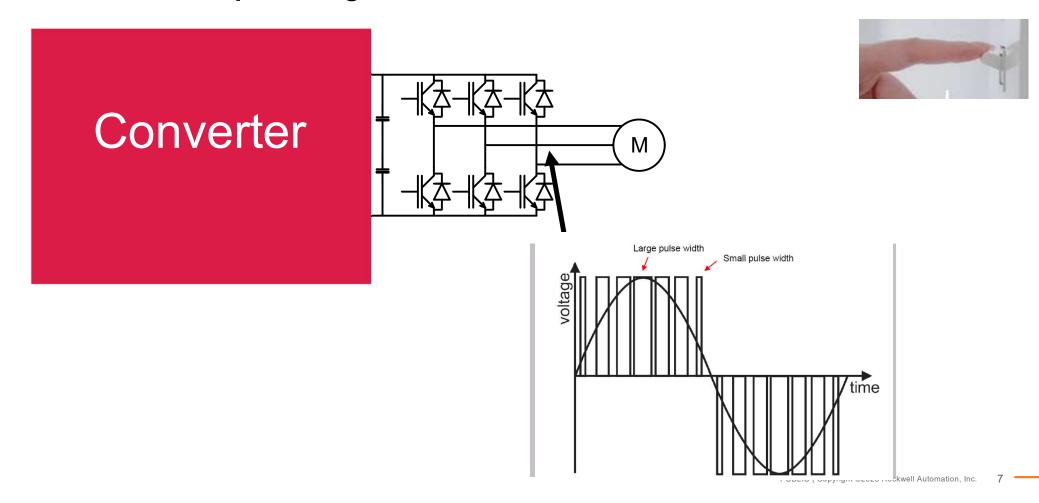

- <u>DRIVES-IN001</u> Wiring and Grounding Guidelines for PWM AC Drives
- <u>DRIVES-AT003</u> Industry Installation Guidelines for PWM AC Drives
- 750-IN001 PowerFlex 750 Drives Installation Instructions
- 520-UM001 PowerFlex 520 Drives User Manual
- <u>750-IN100</u> PowerFlex 750 Series Products with Total Force Control Installation instructions
- GMC-RM001 System Design for Control of Electrical Noise
- <u>Drives-AT001</u> Drives Engineering Handbook
- Selecting the Best Option for Mounting Low-Voltage AC Drives
 - Jeff Raefield, Power Technical Consultant, Rockwell Automation
- EMI Emissions of Modern PWM AC Drives
 - IEEE Industry Applications Magazine, Vol. 5, No. 6, November/December 1999, pp. 47-81.
 - Gary L. Skibinski, Russel J. Kerkman, and Dave Schlegel

Compatible, Reliable, and Dependable to Keep Your Enterprise Operating

Compatibility of an AC Drive System

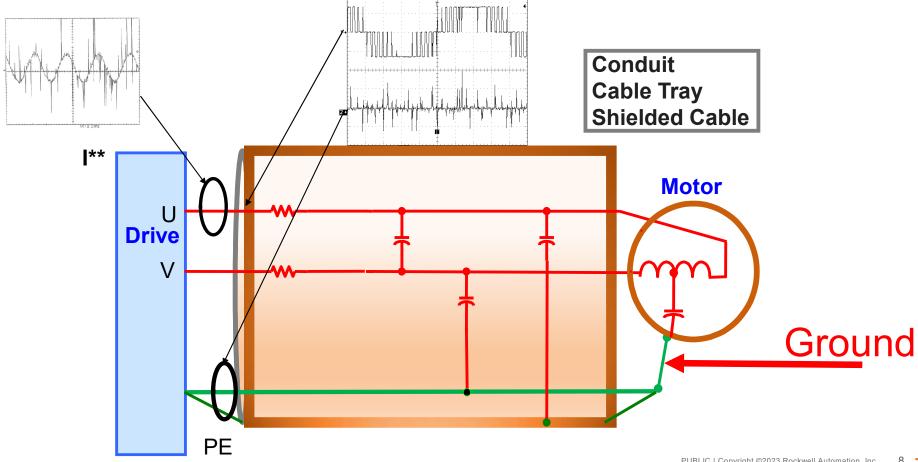
Controlling Electro Magnetic Emissions (prevent interference)

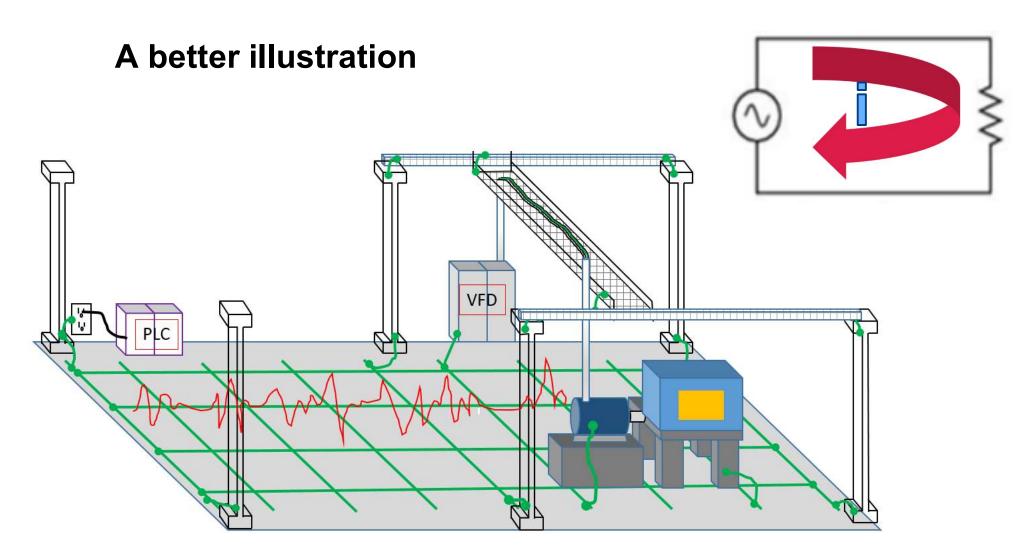
Comparing a 6 pulse drive to an AFE drive

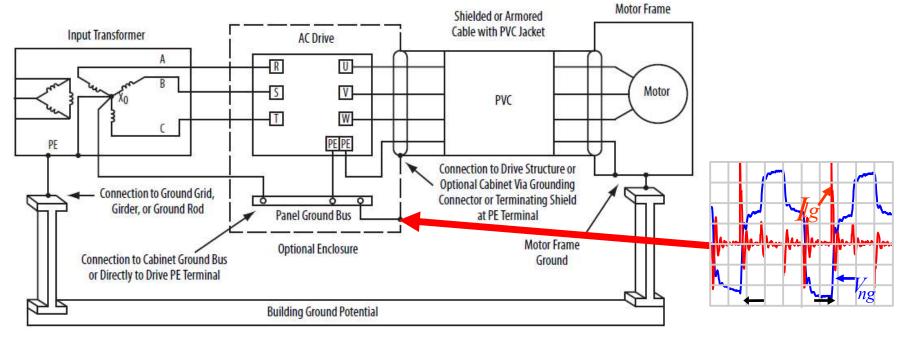

6 Pulse Rectifier Filter Inverter Optional output filter AC Side Active Front End Figure 3: Active Front End Power Structure

Inverter

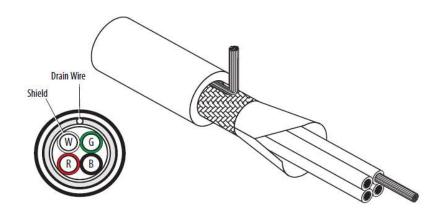
Motor

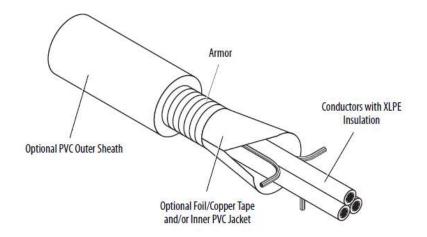

Side


What a VFD output voltage and current looks like



Electrical Characteristics of VFD output cable and motor showing

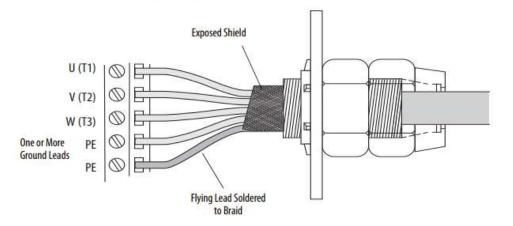

parasitic capacitance to ground and high frequency common mode current

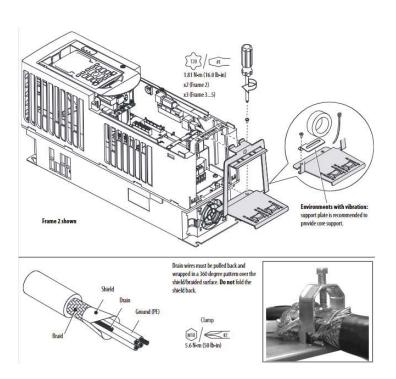


VFD Cable Selection

< 200HP

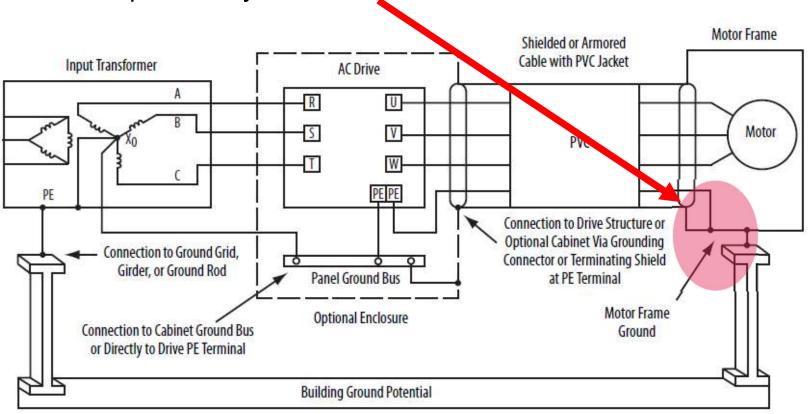
> 200HP

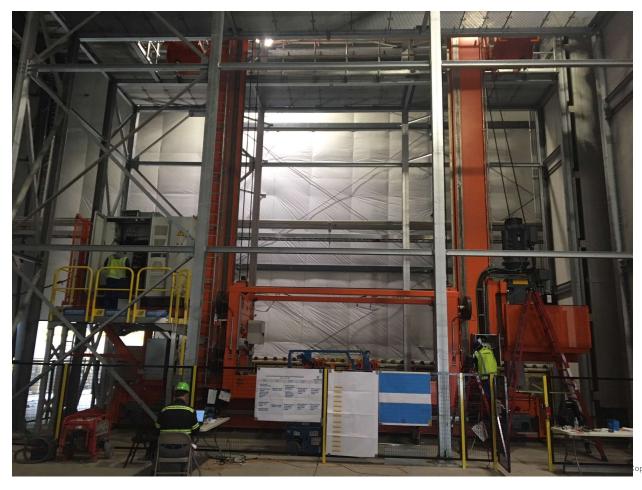



How do you get the shield connected to the drive?

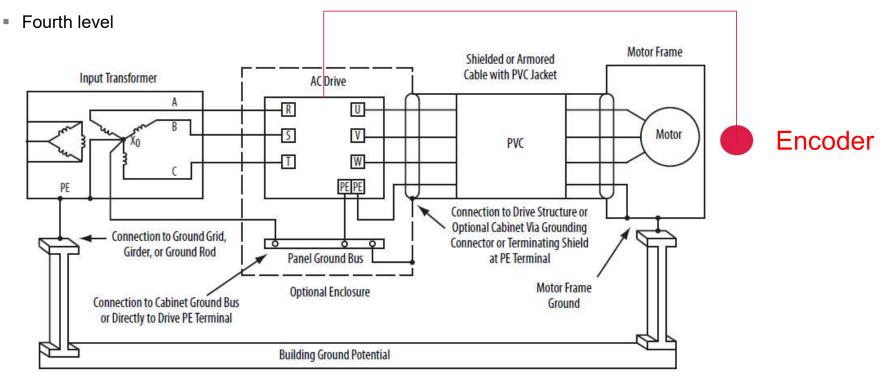
Good

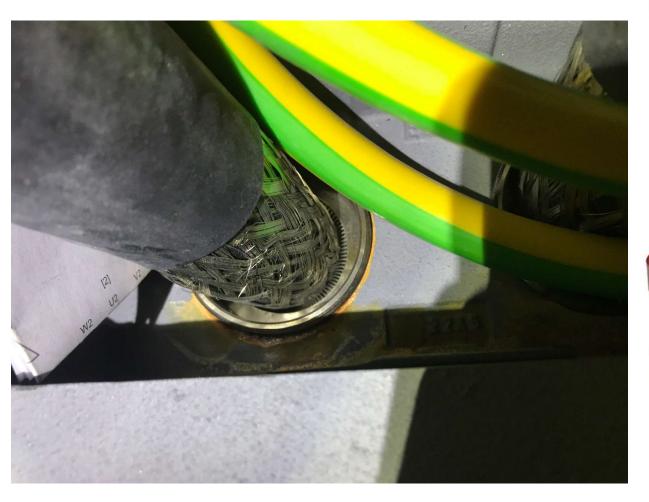
Better


Figure 24 - Terminating the Shield with a Pigtail Lead



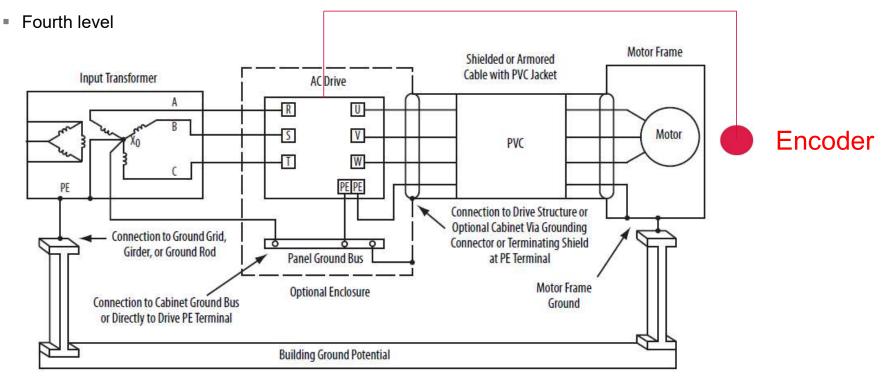
How about on the motor side of the shield?

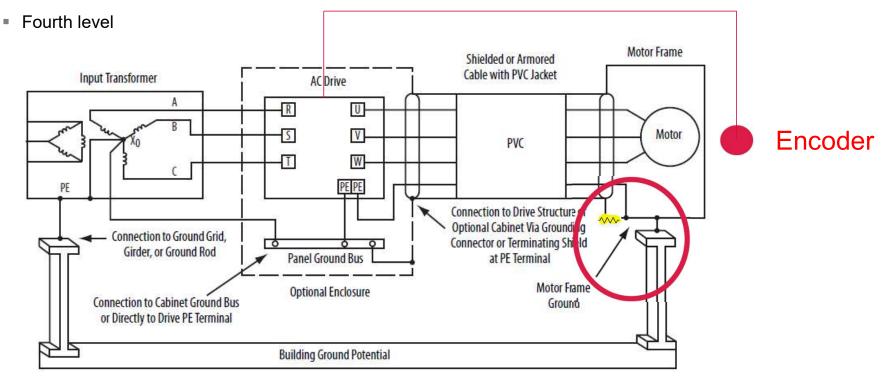

https://www.youtube.com/watch?v=MWwaK2ZVebY

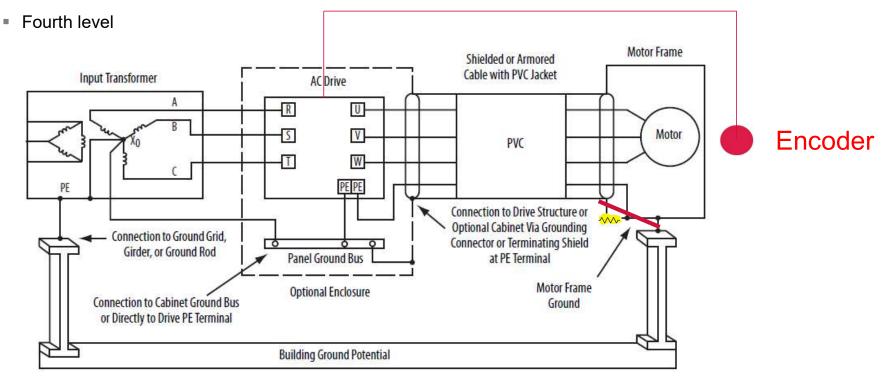

Shield Termination

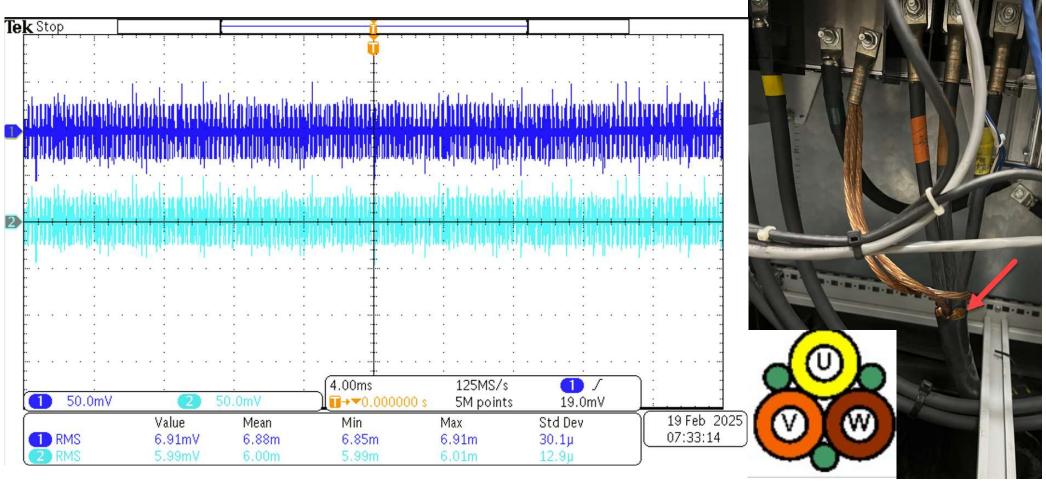
- Click to edit Master text
 - Second level
 - Third level

Shield Termination




Hubbell, grounding clamp


- Click to edit Master text
 - Second level
 - Third level


- Click to edit Master text
 - Second level
 - Third level

- Click to edit Master text
 - Second level
 - Third level

Connecting the shield

Redirecting Emissions with power jumpers

Table 29 - Recommended Power Jumper Configurations Wall Mount Frames 1...7

Power Source Type	Jumper PE-A (1) (2) (MOV / Input Filter Caps)	Jumper PE-B (DC Bus Common mode Caps)	Benefits Of Correct Configuration on Power Source Type				
Non-Solid Ground AC fed ungrounded Impedance grounded B phase ground C fed from an active converter	Disconnected	Disconnected	Helps avoid severe equipment damage when ground fault occur.				
AC fed solidly grounded DC fed from passive rectifier which has a solidly grounded AC source	Connected	Connected	UL compliance, Reduced electrical noise, Most stable operation, EMC compliance, Reduced voltage stress on components and motor bearings				

⁽¹⁾ When MOVs are disconnected, the power system must have its own transient protection to insure known and controlled voltages.

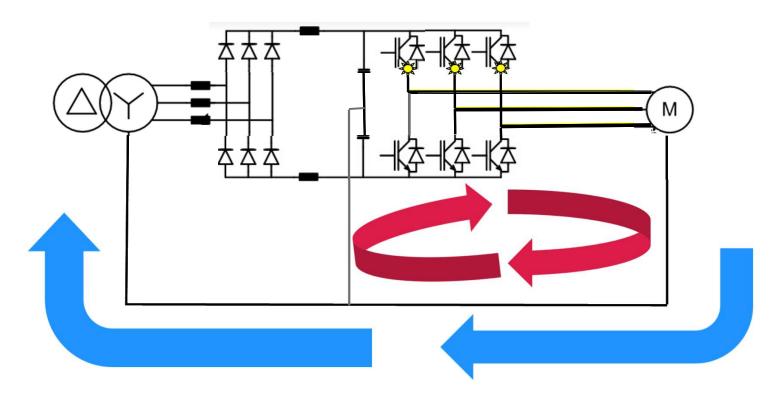
⁽²⁾ Frame 5...7 Common DC Input drives do not have the PE-A jumper.

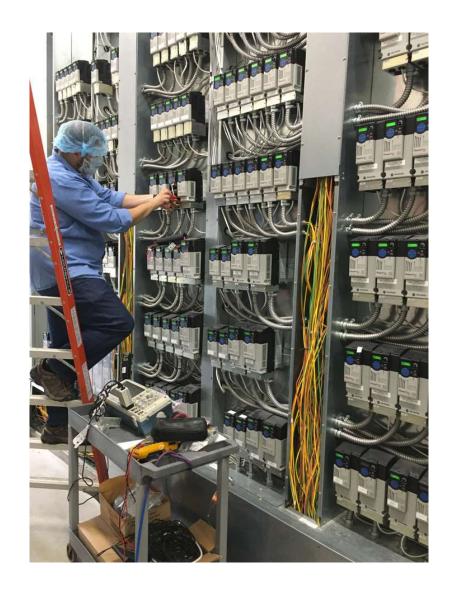
What about Active Front End Drives when it comes to power

jumpers?

Table 69 - PowerFlex 755TL/TR Drive Jumpers

		PE-A	PE-A1	PE-A2	PE-B1				
Grounding Scheme	EMC Option	MOV on the AC Precharge Control Circuit Board	MOV in the TVSS Module	Common Mode Caps on All AC Common Mode Filter Circuit Boards	Y-Caps on Line Side Converter Power Interface Circuit Boards	Y-Caps on Motor Side Inverter Power Interface Circuit Boards			
Factory Default	C3	Connected (In)	Connected (In)	Connected (In)	Disconnected (Out)	Disconnected (Out)			
Grounded	C2 (1)	Connected (In)	Connected (In)	Connected (In)	Disconnected (Out)	Disconnected (Out)			
orounueu	C3	Connected (In)	Connected (In)	Connected (In)	Disconnected (Out)	Disconnected (Out)			
Ungrounded/High- resistance Ground ⁽²⁾ AC fed ungrounded Impedance grounded B phase ground		Disconnected (Out)	Disconnected (Out)	Disconnected (Out)	Disconnected (Out)	Disconnected (Out)			
Marine Ungrounded / High Resistance Ground ⁽¹⁾	40 40	Disconnected (Out)	Disconnected (Out)	Disconnected (Out)	Disconnected (Out)	Disconnected (Out)			


Table 70 - PowerFlex 755TM Regenerative Bus Supplies Jumpers

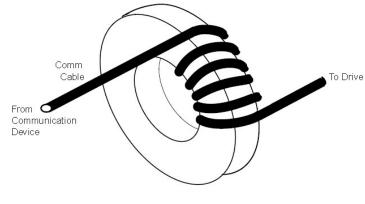

		PE-A	PE-A1	PE-A2	PE-B1				
Grounding Scheme	EMC Option	MOV on the AC Precharge Control Circuit Board	MOV in the TVSS Module	Common Mode Caps on All AC Common Mode Filter Circuit Boards	Y-Caps on Line Side Converter Power Interface Circuit Boards	Y-Caps on Motor Side Inverter Power Interface Circuit Boards			
Factory Default	C3	Connected (In)	Connected (In)	Connected (In)	Disconnected (Out)	=			
Grounded	C2 (1)	Connected (In)	Connected (In)	Connected (In)	Disconnected (Out)	-			
brounded	C3	Connected (In)	Connected (In)	Connected (In)	Disconnected (Out)	1			
Ungrounded/High- resistance Ground ⁽²⁾ AC fed ungrounded Impedance grounded B phase ground	225	Disconnected (Out)	Disconnected (Out)	Disconnected (Out)	Disconnected (Out)				
Marine Ungrounded / High Resistance Ground ⁽¹⁾	250	Disconnected (Out)	Disconnected (Out)	Disconnected (Out)	Disconnected (Out)	=			

Meets EN61800-3 Category C2 for conducted emissions.
 Ungrounded and high-resistance ground systems do not meet the EMC Directive due to the disconnected jumper positions.

Meets EN61800-3 Category C2 for conducted emissions.
 Ungrounded and high-resistance ground systems do not meet the EMC Directive due to the disconnected jumper positions.

Path of common mode current with jumper

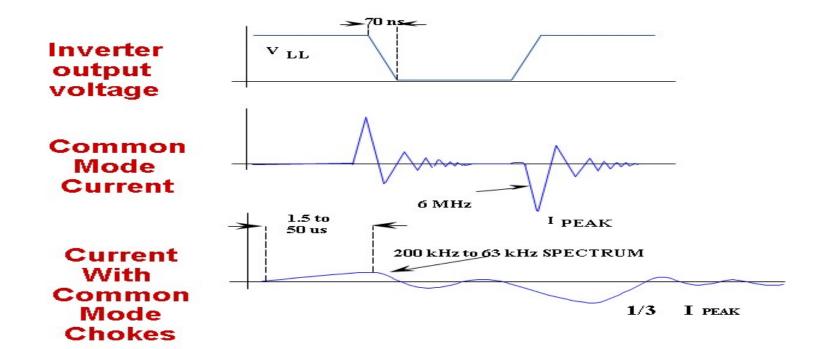
Attenuating Emissions with Common Mode Chokes/Ferrite Applied to Signal Cables i.e Encoders, Analog, Communication

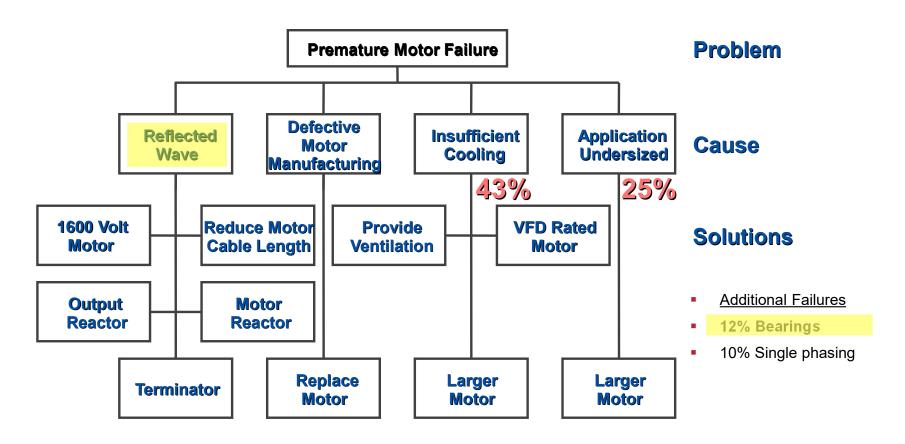

- Cabling Chapter 6 of Drives-IN001
 - Other hardware
 - Common Mode Cores/Ferrite Chokes

Another effective method of reducing common mode noise is to attenuate the noise before it can reach the ground grid. Install a common mode ferrite core on the output cables to reduce the amplitude of the noise to a level that makes it relatively harmless to sensitive equipment or circuits. Common mode cores are most effective when multiple drives are in a relatively small area. For more information, refer to 1321-M Common Mode Chokes Instructions, publication 1321-5.0.

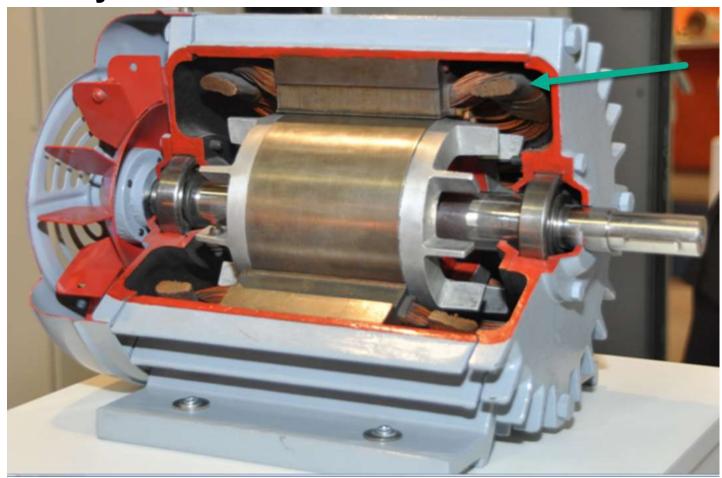
Follow these guideline as a general rule for installing common mode chokes:

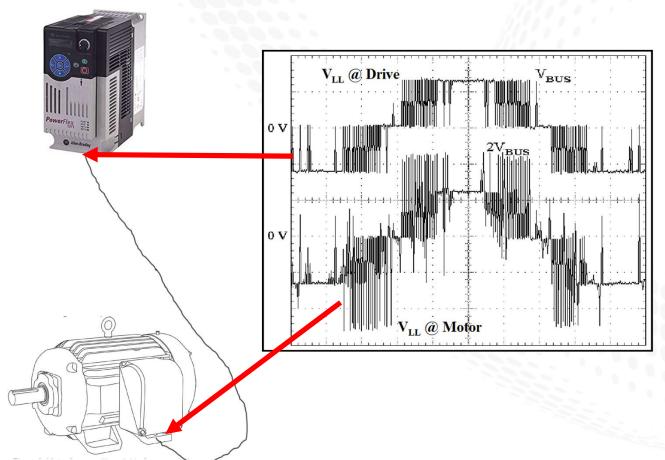
- If the distance between the drive and motor, or the drive and input transformer, is greater than 22.8 m (75 ft), and
- If sensitive circuits with leads greater then 22.8 m (75 ft), such as encoders, analog or capacitive sensors, are routed in or out of the cabinet near the drive or transformer, then

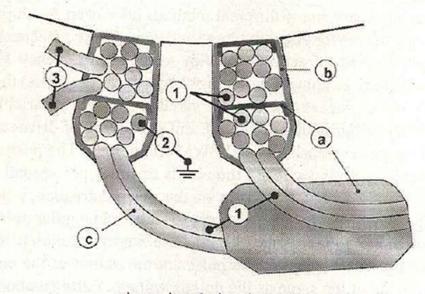

Install common mode chokes.



Common Mode Noise


What Do Common Mode Chokes Do?

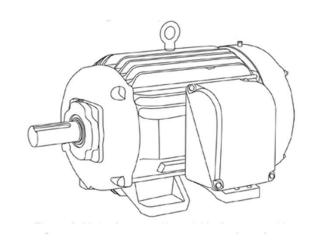

Reflected Wave and VFD appplications



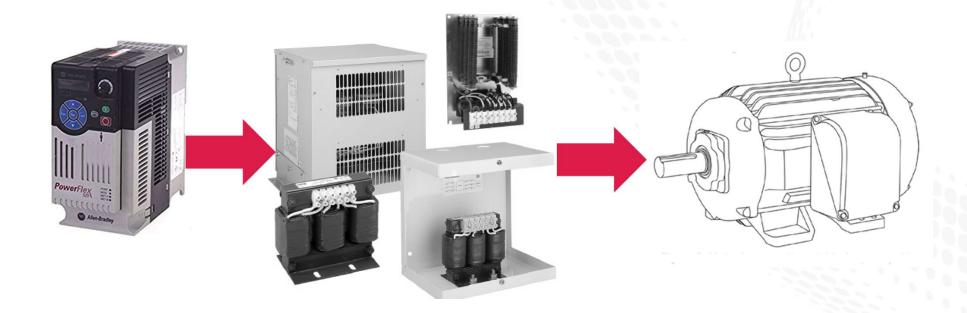
Motor Cutaway

phase insulation / overhang insulation

ground insulation


turn insulation

phase to phase


2 phase to ground

turn to turn

Specify and buy Inverter Duty Insulated Motors (designed to NEMA motor standard MG1 part 31 1992 - 2021)

- Cabling Appendix A of Drives-IN001
 - Length
 - Symptoms: Motor Failures, Overcurrent Faults

Table 47 - PowerFlex 753 and 755 Wall Mount Drives, 480V Shielded/Unshielded Cable – Meters (Feet) (continued)

ive	Rating		No Solution			Reactor Only			Reactor and Damping Resistor or 1321-RWR				Reactor/RWR (see page 129)	Resistor		Available Option				
Frame	Нр	kHz	1000V	1200V	1488V	1600V	1000V	1200V	1488V	1600V	1000V	1200V	1488V	1600V	Cat. No.	Ohms	Watts	TEAT	TFB2	RWR2
	1.0	2	7.6 (25)	12.2 (40)	83.8 (275)	83.8 (275)	7.6 (25)	91.4 (300)	152.4 (500)	152.4 (500)	152.4 (500)	152.4 (500)	152.4 (500)	152.4 (500)				•		•
		4	7.6 (25)	12.2 (40)	83.8 (275)	83.8 (275)	7.6 (25)	12.2 (40)	121.9 (400)	152.4 (500)	152.4 (500)	152.4 (500)	152.4 (500)	152.4 (500)				•		•
1	2.0	2	7.6 (25)	12.2 (40)	83.8 (275)	83.8 (275)	7.6 (25)	91.4 (300)	182.9 (600)	182.9 (600)	152.4 (500)	182.9 (600)	182.9 (600)	182.9 (600)				•	•	•
		4	7.6 (25)	12.2 (40)	83.8 (275)	83.8 (275)	7.6 (25)	12.2 (40)	121.9 (400)	182.9 (600)	152.4 (500)	182.9 (600)	182.9 (600)	182.9 (600)				•		•
	3.0	2	7.6 (25)	12.2 (40)	106.7 (350)	152.4 (500)	7.6 (25)	91.4 (300)	182.9 (600)	182.9 (600)	152.4 (500)	182.9 (600)	182.9 (600)	182.9 (600)				•	•	•
		4	7.6 (25)	12.2 (40)	106.7 (350)	152.4 (500)	7.6 (25)	12.2 (40)	121.9 (400)	182.9 (600)	152.4 (500)	182.9 (600)	182.9 (600)	182.9 (600)				•		•

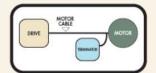
Type A Motor

- · No phase paper or misplaced phase paper
- · Lower quality insulation systems
- Corona inception voltages between 850...1000V

Type B Motor

- · Properly placed phase paper
- · Medium quality insulation systems
- Corona inception voltages between 1000...1200V

1488V Motor


- Meets NEMA MG 1-1998 section 31 standard
- · Insulation can withstand voltage spikes of 3.1 times rated motor voltage due to inverter operation

329 R/L Motor

- AC variable speed motors are control-matched for use with Allen-Bradley drives
- Motor designed to meet or exceed the requirements of the Federal Energy Act of 1992
- Optimized for variable speed operation and include premium inverter grade insulation systems that meet or exceed NEMA MG1 (Part 31.40.4.2)

WEB-BASED SIMULATOR

REFLECTED WAVE

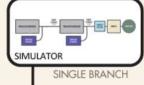
The reflected wave simulation tool

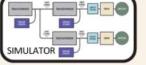
models the high frequency

characteristics of the inverter PWM


voltage waveform , the cable

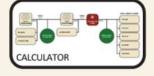
connecting the drive to the motor


and the motor itself, to predict the

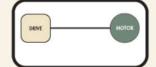

peak value and rise time of the

VOLTAGE DROP

HARMONICS



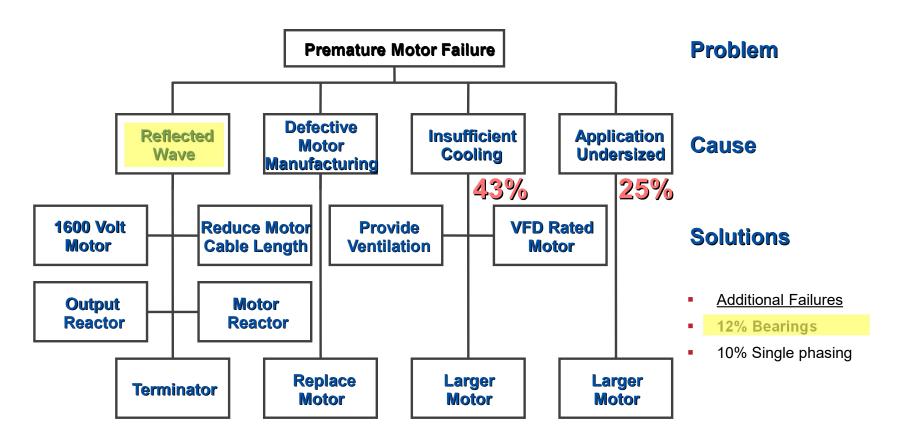
DUAL BRANCH


The voltage drop calculator estimates the voltage available at the load by computing the voltage drops through the source transformer, cables, line and load reactors, drive and output filters. A plot of available voltage as a function of cable length between

The harmonics simulator is a circuit simulation program with one or two load branches. Each of the loads can be set to be of a specific type. Waveforms of voltage and current at different points of common coupling are generated along with numerical Legal Notice | Privacy Policy

HARMONICS

TORQUE HARMONICS

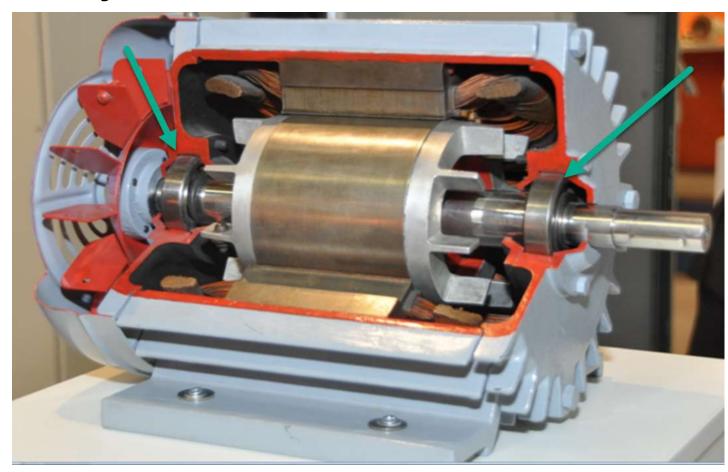


The harmonics calculator is a spreadsheet based tool which uses look-up tables to estimate the voltage and current harmonics at different points of common coupling in a network consisting of multiple loads. Only numerical outputs are provided including checks for

The torque harmonics calculator estimates the harmonics in the electromagnetic motor torque for the drive and motor parameters provided by the user. The model does not include the dynamics of the driven load.

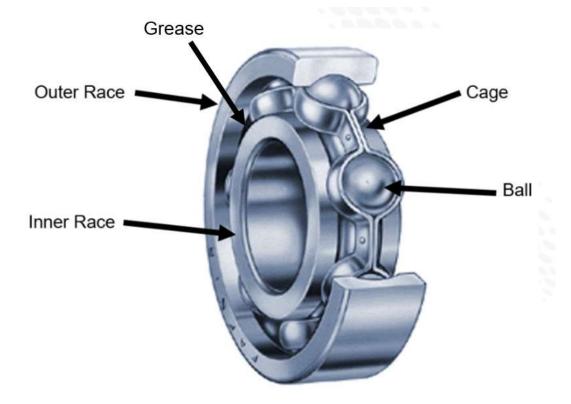
voltage waveform at the motor ttps://rockwell.transim.com/ReflectedWave

Bearing Current and VFD appplications



Bearing failures caused by current is not a new phenomenon.

- 1. Alger, P. L. and Samson, H. W., "Shaft Currents in Electric Machines", *Trans. A.I.E.E.*, February 1924, v. 43, pp. 235 245. [Crossref], [Google Scholar]
- 2. Pearce, C. T., "Bearing Currents—Their Origin and Prevention", *Electric J.*, August 1927 v. 24, pp. 372 376. [Google Scholar]
- 3. Riggs , L. W. , "How Much Shaft Current Can a Bearing Carry Safely?" *Power* , February 1944 pp. 103 105 . [Google Scholar]
- 4. Hoover , D. B. , " Heating and Failure of Bearings Due to Little Appreciated Causes ", Water Works and Sewerage , October 1945 , v. 92 , n. 10 , pp. 297 299 . [Google Scholar]
- 5. Wilcock , D. F. , "Bearing Wear Caused by Electric Current ," *Electrical Manufacturing* , February 1949 pp. 108 111 . [Google Scholar]
- 6. "Static Charges Might Cause Turbine Bearing Failures," Power Engineering, May 1954, v. 58, pp. 73 74. [Google Scholar]
- 7. Rudorff , D. W. , "Principles and Applications of Spark Machining", *Proc. Inst. Mech. Engrs.* (1957) v. 171 , n. 14 , pp. 495 512 . [Crossref], [Google Scholar]


Motor Cutaway

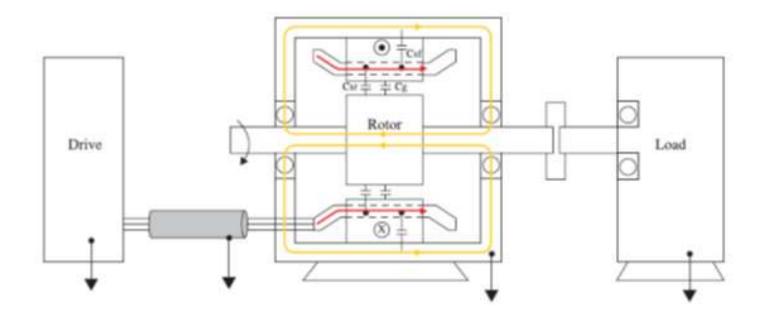
Non Drive End (NDE)

Drive End (DE)

Parts of the bearing

Outer Raceway

Inner Raceway



Bearing Current Sources and Mechanisms

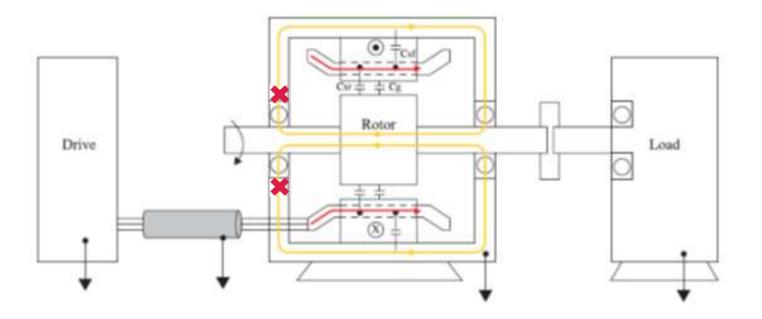
- Three sources of bearing current
 - Electro magnetically induced (circulating current)
 - Electrostatic coupled (electrical or mechanical (ESD))
 - Ground source current (back feeding)

Circulating Current

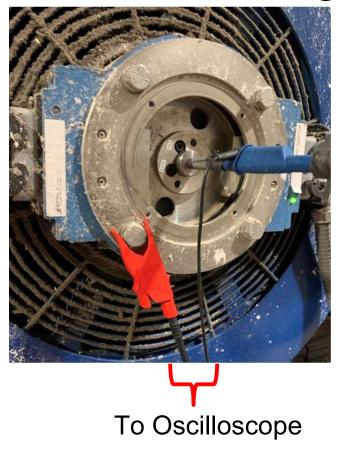
Magnetically Induced Voltage developed from DE to NDE

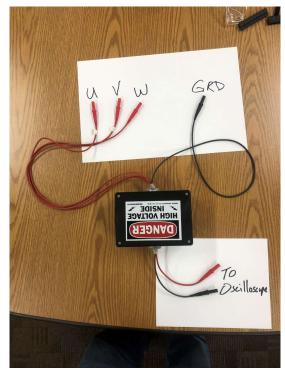
Solution: Insulated bearing on the Non Drive End

INSULATED



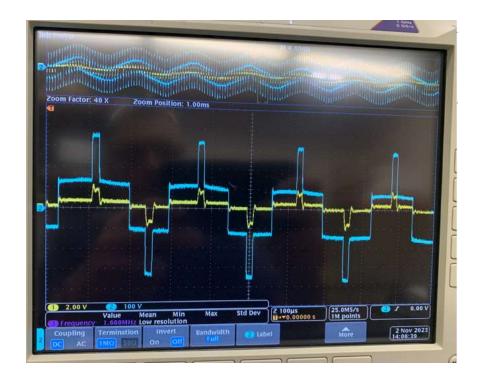
NON-INSULATED




Circulating Current

Insulated Bearing on NDE bearing prevents circulating current

Electro Static Coupled What is Shaft Voltage? What is Stator to Neutral Voltage?



Yellow is Shaft Voltage. Teal is Stator Neutral to Ground

Normal

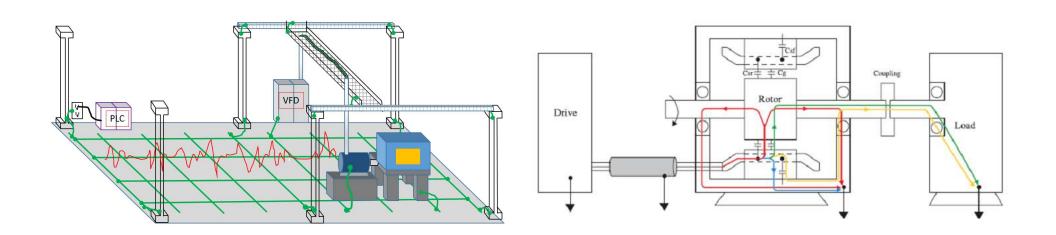
Shaft Voltage Discharge


Electrostatic Coupled

Motor Frame

Shaft

Solution: Shaft Brush



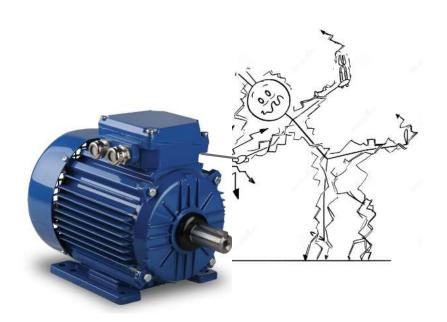
Backfeeding Current

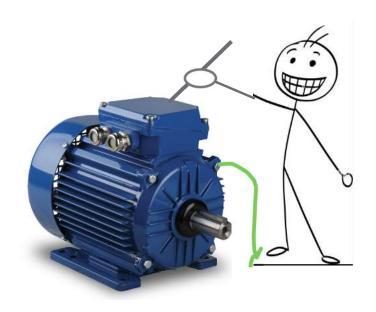
Common Mode Current Finds Path Through

- 1. Motor Bearings
- 2. Machine (gear box, pillow bearings)

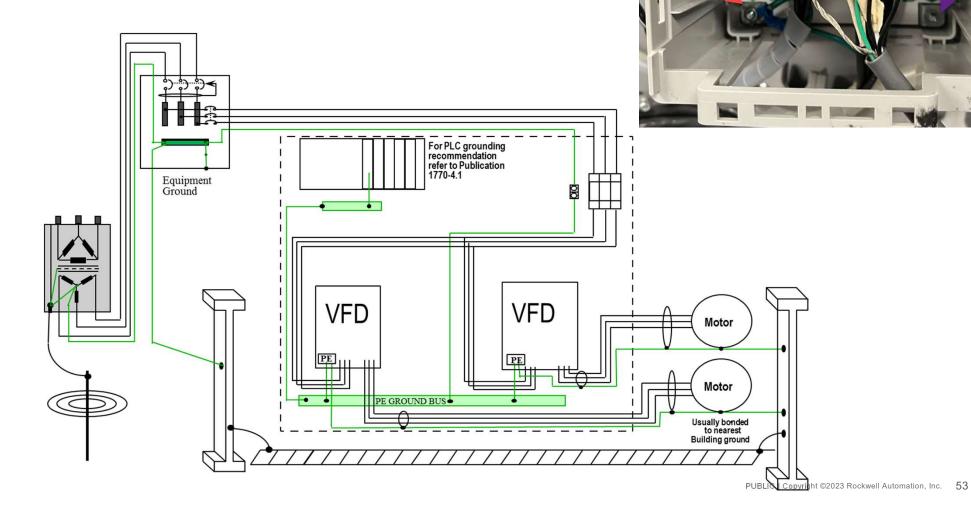
Solution: CM core or reactor on output of drive

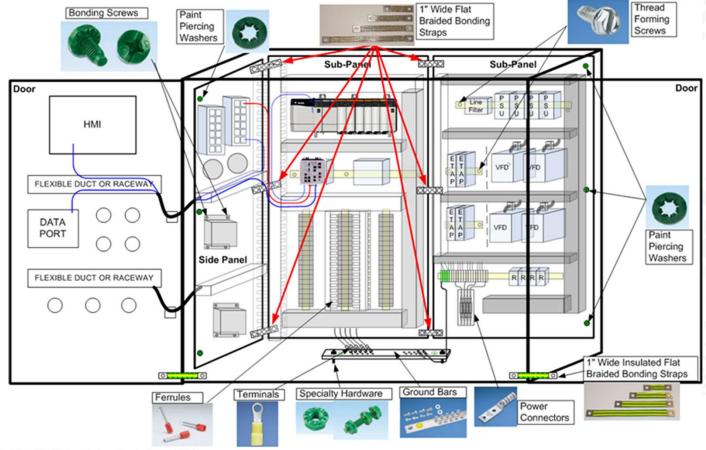
Solution to Bearing Current Mechanisms.


- Insulated Bearing.
- Shaft Ground Brush.
- Grounding and Bonding of Motor Cables.
- ASD Output LR Filter, especially for AFE Drives.
- For AFE: DC Bus Conditioner.
- Common Mode Choke.
- Conductive Lubricants.
- ASD Output Load Reactor.
- Ceramic Bearing.
- Insulated Coupling between Motor and Encoder.
- ASD Carrier Frequency Setting.
- ASD Common Mode Voltage Reduction Feature.


What is ground anyway????!!!!???

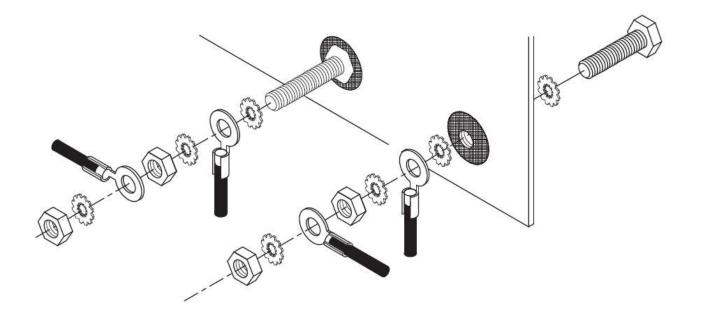
Safety Ground




Purpose of Ground

- Low resistance to ground or earth to provide a fault return path between the fault and the source to lessen a voltage hazard until a breaker or fuse opens that disconnects the power source from the fault
- Low resistance path between equipment metal chassis and nearby metal structures to minimize personal danger in the event of an electrical fault within the equipment.
- Provide the preferred path for a lightning stroke
- Provide a path for Electro Static Discharge
- Common, low impedance reference plane between electronic devices, circuits, and systems
- Reference plane for radio frequency antenna systems

Grounding and Bonding to Panel


AC Drive Panel Layout and Bonding

Grounding and Bonding for the Industrial Plant Floor Why it's Important and How to Accomplish it' David Dohm, RCDD-Technical Systems Engineering Program Manager Panduit Corporation

Grounding & Bonding Inside the panel

Can you see whats wrong?

Input Cabling Recommendations

*Not the same recommendation as motor cables. Motor cables must handle PWM signals.

In general, the selection of cable for AC input power to a drive <u>has no special</u> <u>requirements</u>. Some installations may suggest shielded cable to prevent coupling of noise onto the cable.

Type – Copper Only

Size – differs per drive. See VFD User Manual for each specific VFD size.

Shielded or Unshielded - Shielded provides noise immunity to EMC standards (CE, C-Tick, FCC, etc). If shielded cable is used the shields must be bonded at both ends to provide a continuous path for common mode noise current.

Industries - Individual industries may have required standards due to environment or experience

Input Protection Recommendations

Thermal Magnetic Breaker (Acceptable**)

Bussmann DFJ Drive Fuse (Recommended)

Fuse and Circuit Breaker Ratings

Ferraz Shawmut HSJ Fuse (Recommended)

The tables in this section provide recommended AC line input fuse and circuit breaker information. See the following Fuses and Circuit Breakers sections for CE and UL requirements. The size recommendations are based on 40 °C (104 °F) and the U.S. NEC. Other country, state, or local codes can require different ratings. DC link fuse recommendations for DC input drives are also provided.

Fuses

The recommended fuse types are listed here. Select a fuse rating within the range that is specified in the tables starting on page 76.

- CE Type qG fuses
- UL Fast-acting Class J, T

IMPORTANT For maximum protection of the drive and its internal components, we recommend the use of fuses over other methods of circuit protection. Fuses reduce the risk of drive damage from power quality events and improves machine and process utilization.

Circuit Breakers

The non-fuse listings in the following tables include inverse time circuit breakers, and 140M/ 140MT self-protected combination motor controllers. If one of these methods is chosen for protection, the following requirements apply, for both UL and CE installations:

- 140M/140MT self-protected combination motor controllers are acceptable if the installation conforms with the requirements that are specified in the tables.
- Inverse time circuit breakers can only be used with a fuse that is specified in the tables.

Input Protection Sizing

Are Circuit Breakers an Option?

- Circuit Breakers **must** be used with the **specified fuses** to be compliant with the UL61800-5-1 (2nd ed.) and EN61800-5-1:2007 specifications
- All drives designed after 2/1/2020 must comply (e.g., 755TS/R/L/M)

The UL 61800-5-1 Specification [Link Here]

UL 61800-5-1 harmonizes the requirements for the safety and design of low-voltage drives and replaces the UL 508C specification. The incentives for development of the new UL specification include:

- Creates a unified global requirement for the safety and design of low-voltage (LV) drive products.
- Design, testing and certification of new drive products is simplified, which previously mandated compliance with requirements based on geography:
 - Marking UL 508C for UL for drive applications in North America
 - Marking EN / IEC 61800-5-1 for CE typically for drive applications in Europe and the rest of the world, since both these UL and IEC standards were vastly different
- And ultimately, to help create a single design of low-voltage drive products that can be used globally without additionally requiring another certification based upon the geographic location where the drive is installed and used.
- All PowerFlex 755T drives are designed and built to meet these new requirements

From 750-TD104

400V AC and 540V DC Input Protection Devices—Drive Frames 1...7, and 7A (Continued)

			Sized For	Norma	Duty	Sized Fo	Sized For Heavy Duty			Input Oty. AC Input Protection Devices						Input Oty.	DC Input Pro	tection ⁽¹²⁾			
Applied Rating (1)		Cont. Output Amps	Cat. No.	Output Overload Amps		Cat. No.	Output Overload Amps		Cont. AC Input		Fuse		Circuit Breaker ⁽⁶⁾			140M/140MT Type E Combination Motor Controller with Adjustable Current Range ⁽⁷⁾ (8)		Cont. DC Input		Fuse Holder Cat. No.	
kW	Frame (2)			1 Min	3 s		1 Min	3 s	kVA	Amps	Min [A] ⁽⁴⁾	Max [A] ⁽⁵⁾	Max/140G Part No.	Max I ² t [kA ² s]	I _{peak} [kA]	Min. Encl. Vol. [in. ³] ⁽¹¹⁾	Cat. No.	Min. Encl. Vol. [in. ³] ⁽¹¹⁾	Amps	20.00	20-750
								62		1	400V AC Inpu	t				•				540V DC Inpu	ıt
55	5	104	20GC104	114.4	156	20GC140 ⁽³⁾	156	210	64.5	93.1	125	200	175/140G-JC6F3-D17	980	30	29291	-	-	109.9	DCFUSE3S-200A	DCFH-NH1
75	6	140	20GC140	154	210	20GC170	210	255	88.9	128-3	175	300	250/140G-JC6F3-D25	980	30	43937	-	-	151.4	DCFUSE3S-315A	DCFH-NH1
90	6	170	20GC170	187	255	20GC205	255	307.5	107.9	155.8	200	300	250/140G-JC6F3-D25	980	30	43937	-	-	183.9	DCFUSE3S-315A	DCFH-NH1
110	6	205	20GC205	225.5	307.5	20GC260	307.5	390	130.1	187.8	250	400	300/140G-KC6F3-D30	4200	47.9	43937	-	-	221.7	DCFUSE3S-400A	DCFH-NH1
132	6	260	20GC260	286	390				165	238.2	300	500	400/140G-KC6F3-D40	4200	47.9	43937	-	-	281-2	DCFUSE5S-500A	DCFH-NH2
102	7	200				20GC302	390	468	165	238.2	300	500	400/140G-KC6F3-D40	4200	47.9	43937	-	-	281-2	DCFUSE6S-500A	DCFH-NH3
160	7	302	20GC302	332.2	453	20GC367	453	550.5	191.7	276.7	350	600	800/140G-M6F3-D80	17000	65	43937	-	-	326.7	DCFUSE6S-550A	DCFH-NH3
200	7	367	20GC367	403.5	550.5	20GC456	550.5	684	232.9	336.2	450	700	800/140G-M6F3-D80	17000	65	43937	-	-	397	DCFUSE6S-700A	DCFH-NH3
200		307				20GC477	550.5	684	232.9	336.2	450	700	800/140G-M6F3-D80	17000	65	43937	-	-	397	DCFUSE6S-700A	DCFH-NH3
250	7	456	20GC456	501.6	684				289.5	417.8	600	800	800/140G-M6F3-D80	17000	65	43937	-	-	493.2	DCFUSE6S-900A	DCFH-NH3
200	7A	472	j.			20GC567	708	849.6	299.6	432.4	1100 (Bussma	nn 170M6xx5)	1300	-	-	-	-	-	-	-	-
270	7	477	20GC477	524.7	715.5				302.8	437	600	800	800/140G-M6F3-D80	17000	65	43937	-	-	516	DCFUSE6S-900A	DCFH-NH3
315	7A	540				20GC650	810	972	342.7	494.7	1100 (Bussma	nn 170M6xx5)	1500	-	-	-	-	-		-	=
315	7A	567	20GC567	623.7	850.5				359.9	519.5	1100 (Bussma	nn 170M6xx5)	1600	_	-	-	-	-	_	-	_
355	7A	650	20GC650	715	975				412.6	595.5	1100 (Bussma	nn 170M6xx5)	1800	-	-	-	-	-	-	-	-

Applied rating refers to the motor that is connected to the drive. For example, a CO22 drive can be used in Normal Duty mode on an 11 kW motor, or in Heavy Duty mode on a 7.5 kW motor. A CO15 drive can be used in Heavy Duty mode on a 5.5 kW motor with the same ratings as a CO11 drive. The drive can be programmed for either mode. For any given drive catalog number, Normal Duty mode provides higher continuous current but smaller overload current when compared to Heavy Duty mode. See parameter

the same ratings as a COII drive. The drive can be programmed for either mode. For any given drive catalog number, Normal Duty mode provides higher continuous current but smaller overload current when compared to Heávy Duty mode. See parameter 0:35 [Duty Rating Cfg].

(2) Only enclosure codes F. N., and R. See the explanation of catalog number positions 8...10 for 400V drives on page 5 for frame sizes.

(3) This drive is the next larger frame size.

(4) For UL compliance - fast-acting class J (Bussmann DFJ) or fast-actin

Shown are maximum values.

Bulletin 1406 circuit breakers rated 400A are UL489 listed current-limiting type with SCCR of 65 kA, and can be used without fuses when the drive is installed in an enclosure with minimum volume as specified. Equivalent UL489 listed current-limiting circuit breakers may be used if they have SCCR of 65 kA, and lower lower of 65 kA, and lower lo

Bulletin 140G circuit breaker rated at 8004 is 00.489 listed with SCCR of 65 kA, and can be used without fuses when the drive is installed in an enclosure with minimum volume as specified. Equivalent 00.489 listed circuit breakers may be used if they has SCCR of 65 kA, and lower I_{men} and 1^ot ratings.

(7) Bulletin 140M/140MT is UL Listed for 480Y/277K. Not UL Listed for use on 400V or 480V Delta/Delta, corner ground, or high-resistance ground systems.

(8) Bulletin 140M/140MT must be Frame C (140M-02E-xxxx or 140MT-03E-xxxx) or Frame D (140M-08E-xxxx or 140MT-03E-xxx) or Frame D (140M-18E-xxxx). Max. source SCCR = 65 kA.

(10) Bulletin 140M/140MT must be Frame D (140M-08E-xxxx or 140MT-03E-xxxx) in Frame D (140M-08E-xxxx or 140MT-03E-xxxx). Max. source SCCR = 65 kA.

(11) When using the Bulletin 140M/140MT or a circuit breaker, the drive must be installed in a ventilated or non-ventilated enclosure with the minimum volume that is specified in this column. Application-specific thermal considerations can require a larger

enclosure.

(12) DC fuses specified are UL recognized and CE compliant.

400V AC and 540V DC Input Protection Devices—Drive Frames 1...7, and 7A

Applied Rating (1)	(Sized For	Sized For Normal Duty Size			Sized For Heavy Duty			t Oty.	AC Input Protection Devices							Input Oty	DC Input Protection (12)		
		Cont. Output Amps	Cat. No.	Output Overload Amps		Cat. No.	Ou Overlo	Output Overload Amps		Cont. AC Input		Fuse Circ		cuit Breaker ⁽⁶⁾			140M/140MT Type E Combination Motor Controller with Adjustable Current Range ⁽⁷⁾ (8)		Cont. DC Input	Fuse Cat. No. 20-750	Fuse Holder Cat. No.
	Frame (2)			1 Min	3s		1 Min	3s	kVA	Amps	Min [A] ⁽⁴⁾	Max [A] ⁽⁵⁾	Max/140G Part No.	Max I ² t [kA ² s]	I _{peak} [kA]	Min. Encl. Vol. [in. ³] ⁽¹¹⁾	Cat. No.	Min. Encl. Vol. [in. ³] (11)	Amps	20 100	20-750
		2	12	100	90 T		t s	8 - 4		4	+00V AC Inpu	t		35	10 0 10 0			97	34 - 44 33 - 43	540V DC Inpo	ıt
0.37	1	1.3				20GC2P1	2.3	3.2	8.0	1.2	2	4	15/140G-HC6C3-C15	510	23.2	29291	140x-xxx-B25 ⁽⁹⁾	3242	1.4	DCFUSE1-10A	DCFH-51
0.75	.1	2.1	20GC2P1	2.3	3.2	20GC3P5	3.9	5.3	1.3	1.9	3	6	15/140G-HC6C3-C15	510	23.2	29291	140x-xxx-B25 ⁽⁹⁾	3242	2.2	DCFUSE1-10A	DCFH-51
1.5	1	3.5	20GC3P5	3.9	5.3	20GC5P0	5.5	7.5	2.1	3.1	4	10	15/140G-HC6C3-C15	510	23.2	29291	140x-xxx-B40 ⁽⁹⁾	3242	3.7	DCFUSE1-10A	DCFH-51
3.25 V			20GC5P0	5.5	7.5				3.1	4.5	6	10	30/140G-HC6C3-C30	510	23.2	29291	140x-xxx-B63 ⁽⁹⁾	3242	5.3	DCFUSE1-10A	DCFH-51
2.2	3	5				20GC8P7	9.6	13.1	3.1	4.5	6	15	30/140G-HC6C3-C30	510	23.2	29291	140x-xxx-B63 ⁽⁹⁾	3242	5.3	DCFUSE1-10A	DCFH-51
4	1	8.7	20GC8P7	9.6	13.1	20GCOTI	13.1	17.3	5.4	7.8	10	20	30/140G-HC6C3-C30	510	23.2	29291	140x-xxx-C10 ⁽⁹⁾	3242	9.2	DCFUSE1-16A	DCFH-51
5.5	1	11.5	20GC011	12.7	17.3	20GC015	17.3	23.1	7.1	10.3	15	25	30/140G-HC6C3-C30	510	23.2	29291	140x-xxx-C16 ⁽¹⁰⁾	3242	12.2	DCFUSE1-20A	DCFH-51
7.5	1	15.4	20GC015	16.9	23.1				9.6	13.8	20	30	30/140G-HC6C3-C30	510	23.2	29291	140x-xxx-C20 ^[10]	3242	16.3	DCFUSE1-25A	DCFH-51
0.75	2	2.1	20GC2P1	3.1	3.7	20GC2P1	3.1	3.7	1.3	1.9	3	4	15/140G-HC6C3-C15	510	23.2	29291	140x-xxx-B25 ⁽⁹⁾	3242	2.2	DCFUSE1-10A	DCFH-51
1.5	2	3.5	20GC3P5	5.2	6.3	20GC3P5	5.2	6.3	2.1	3.1	4	7	15/140G-HC8C3-C15	510	23.2	29291	140x-xxx-B40 ⁽⁹⁾	3242	3.7	DCFUSE1-10A	DCFH-51
2.2	2	5	20GC5P0	7.5	9	20GC5P0	7.5	9	3.1	4.5	6	30	30/140G-HC6C3-C30	510	23.2	29291	140x-xxx-B63 ⁽⁹⁾	3242	5.3	DCFUSE1-10A	DCFH-51
4	2	8.7	20GC8P7	13	15.6	20G. C8P7	13	15.6	5.4	7.8	10	15	30/140G-HC6C3-C30	510	23.2	29291	140x-xxx-C10 ⁽¹⁰⁾	3242	9.2	DCFUSE1-16A	DCFH-51
9	, reers	(A)	2060011	17.2	20.7	206011	17.2	20.7	7.1	10.3	15	20	30/140G-HC6C3-C30	510	23.2	29291	140x-xxx-C16 ⁽¹⁰⁾	3242	12.2	DCFUSE1-20A	DCFH-51
5.5	2	11.5				20GC015	17.3	23.1	7.1	10.3	15	20	30/140G-HC6C3-C30	510	23.2	29291	140x-xxx-C16 ⁽¹⁰⁾	3242	12.2	DCFUSE1-20A	DCFH-51
7.5	2	15.4	20G_C015	16.9	23.1	20G C022	24.2	33	9.6	13.8	20	30	30/140G-HC6C3-C30	510	23.2	29291	140x-xxx-C20 ⁽¹⁰⁾	3242	16.3	DCFUSE1-25A	DCFH-51
- 6	2	3330 C	20GC022	24.2	33			-	13.6	19.7	25	45	30/140G-HC6C3-C30	510	23.2	29291	140x-F8E-C25	3242	23.2	DCFUSE1-40A	DCFH-NH1
n	3	22				20GC030	33	45	13.6	19.7	25	45	30/140G-HC6C3-C30	510	23.2	29291	140x-F8E-C25	4052	23.2	DCFUSE1-40A	DCFH-NH1
15	3	30	20GC030	33	45	20GC037	45	55.5	18.6	26.9	35	60	90/140G-HC6F3-C90	510	23.2	29291	140x-F8E-C32	4052	31.7	DCFUSE3-63A	DCFH-NH1
18.5	3	37	20GC037	40.7	55.5	20GC043	55.5	66.6	22.9	33.1	45	70	90/1406-HC6F3-C90	510	23.2	29291	140x-F8E-C45	4052	39.1	DCFUSE3-63A	DCFH-NH1
22	3	43	2060043	47.3	64.5	20GC060 ⁽³	66	90	26.7	38.5	50	90	90/140G-HC6F3-C90	510	23.2	29291	120	70	45.4	DCFUSE3-80A	DCFH-NH1
la constant						206	bb	90	Zb./	38.5	50	90	90/1406-866673-690	588	25.2	29291	-	-	45.4	DUFUSES-125A	DCFH-NHI
	4	60	20GC060	66	90	20GC072	90	108	37.2	53.7	70	100	90/140G-HC6F3-C90	510	23.2	29291	-	25-5	63.4	DCFUSE3-125A	DCFH-NH1
30		3				20GC073	90	108	37.2	53.7	70	100	90/140G-HC6F3-C90	510	23.2	29291	-	7-	63.4	DCFUSE3-125A	DCFH-NHT
	3	61	20GC061	67.1	91.5				37.8	54.8	70	100	90/140G-HC6F3-C90	510	23.2	29291	- 20		64.5	DCFUSE3-125A	DCFH-NHI
252 2	4	72	20GC072	79.2	108	20GC086	108	129.6	44.6	84.4	80	125	100/140G-HC8F3-D10	510	23.2	29291	500	(T)	76.1	DCFUSE3-125A	DCFH-NH1
1	5		200 0077	20.7	100.5	20GC085	108	129,6	44.6	64.4	80	125	100/140G-HC6F3-D10	510	23.2	29291	183	165	76.1	DCFUSE3S-160A	DCFH-NH1
- 9	4	73	2060073	80.3	109.5	200 0101	107.5	150	45.2	65.3	80	125	100/140G-HC6F3-D10	510	23.2	29291		3275	77.1	DCFUSE3-125A	DCFH-NHI
45	5	85 86	20GC085 20GC086	93.5 94.6	127.5	20GC104	127.5	156	52.7 53.3	76.1 77	100	150	125/140G-HC6F3-D12 125/140G-HC6F3-D12	510 510	23.2	29291 29291	-		90.9	DCFUSE3S-160A DCFUSE3-160A	DCFH-NHI DCFH-NHI
9	4	00	200006	54.0	128				33.3	11	100	130	12371400-00073-012	310	23.2	25231	1-0	20	50.8	DUTUSES-10UA	וחא-חוטט

How do I know if I need Impedance (add a line reactor)? (non regen

drives)

Installation site has switched power factor correction capacitors.

Installation site has reoccurring lightning strikes or voltage spikes in excess of 6000V Peak.

Installation site has power interruptions or voltage dips in excess of 200VAC.

Voltage unbalance trips

The transformer is too large in comparison to the drive. General rule is if the transformer is more than 10x the capacity of the VFD. See calculation:

Sample Calculation of Impedance From DRIVES-IN001

EXAMPLE

The drive is rated 1 Hp, 480V, 2.7A input.

The supply transformer is rated 50,000 VA (50 kVA), 5% impedance.

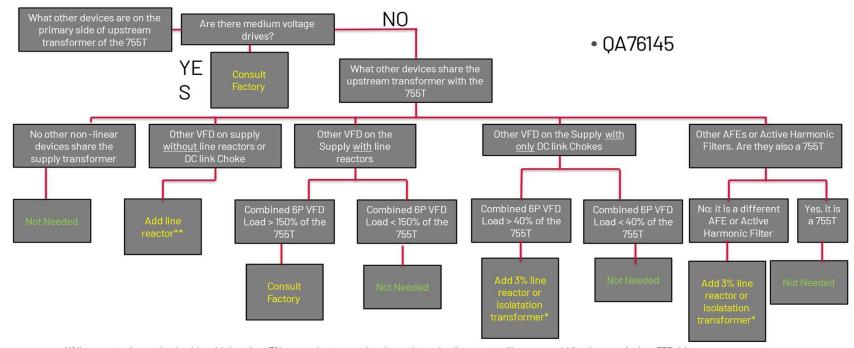
$$Z_{\text{drive}} = \frac{V_{\text{line-line}}}{\sqrt{3} * I_{\text{input-rating}}} = \frac{480V}{\sqrt{3} * 2.7} = 102.6 \text{ Ohms}$$

$$Z_{xfmr} = \frac{(V_{line-line})^2}{VA} * \% \text{ Impedance} = \frac{480^2}{50,000} * 0.05 = 0.2304 \text{ Ohms}$$

Note that the percent (%) impedance has to be in per unit (5% becomes 0.05) for the formula.

$$\frac{Z_{xfmr}}{Z_{drive}} = \frac{0.2304}{102.6} = 0.00224 = 0.22\%$$

0.22% is less than 0.5%. Therefore, this transformer is too big for the drive and a line reactor should be added.


For a more accurate portrayal of impedance

You can add the impedance of the cable from the transformer to the drive. It can add another 5-20 ohms to the transformer.

PowerFlex 755T (L/R/M) – Line Reactor Required? (AFE drives)

For more information, reference Knowledgebase ID QA76145

^{*}If line reactor is required, add no higher than 3% or may be too much voltage drop, size line reactor like you would for the equivalent 755 drive

Treat drives with passive harmonic filters as drives with line reactors, unless they are larger than 1.5 times the 755T. If this is the case, consult factory

^{**}Line reactors are preferred in front of the non 755T drive. In this case add the line reactor in front of the non 755T drive first and follow remaining guidance.

What to do if a line reactor is added in front of an AFE

How do you account for a line reactor when entering the AC Line Parameters into a PF755T

Doc ID:

QA45323

Version:

4.0

Status:

Published

Author:

KA Rest User

Published Date:

10/17/2022

Owner:

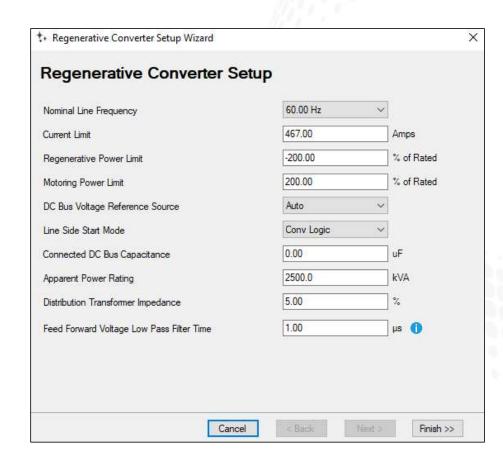
KA Rest User

Answer ID:

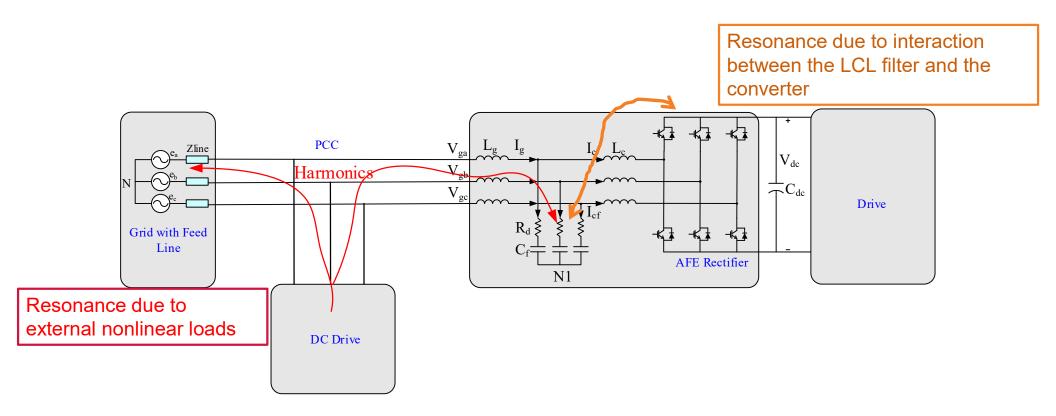
1088022

Last Modified:

9/2/2023


Last Modifier:

Lei Ma


Power Source Considerations with 755T – Setup

- KVA: must be equal to or greater than drive KW rating
- Primary Voltage
- Secondary Voltage
- % Impedance
- Grounding (SOLIDLY GROUNDED PREFERRED!)

What is Capacitor Resonance?

External Non-Linnear Loads: DC Drive, AC Drive, other AFE, MV drives, etc.

Why is it a Problem?

- If filter capacitors get hot it reduces their useful life could lead to unplanned down time (early failure).
- Typically, an AFE drive is part of a lineup or a critical system. Unplanned down time... not good.
- We protect the LCL filter capacitors:
 - To ensure product longevity
 - · To prevent catastrophic failure

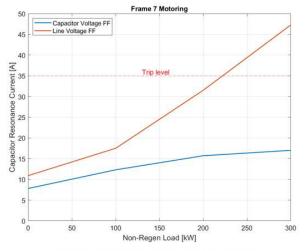
Configurable LCL Filter Capacitor Over Resonance Response

Review the Attention statement that follows if you intend to configure the line side converter to produce an alarm instead of a fault when the LCL Capacitor Over Resonance event occurs.

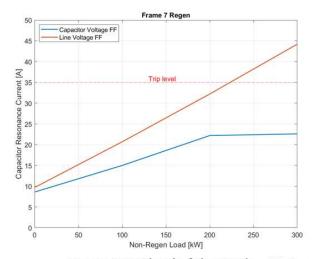
ATTENTION: You must read the following information before you can enable the Line Side Converter to produce an alarm instead of a fault when the LCL Filter Capacitor Over Resonance event occurs.

Operating the product (drive or bus supply) during the LCL Capacitor Over Resonance event may damage the LCL filter. This damage may lead to catastrophic product failure and collateral damages.

It is your responsibility to configure drive parameters, understand the causes and consequences of LCL capacitor over resonance, and meet safety requirements in accordance with all applicable codes and standards. If enabling the Line Side Converter to produce an alarm instead of a fault when the LCL Capacitor Over Resonance event occurs is desired, you must certify the safety of the application. To acknowledge that you have read this 'Attention' and properly certified the application, set bit 5 'CapORsncAlrm' of parameter 13:40 [Conv Options Cfg]. This action removes Fault 56, 'CapOvrRsncCfg'. It allows parameter 0:453 [CapOvrRsncActn] to be set to 0 'Alarm', enabling an alarm instead of a fault.


What if I follow guidance and there is still cap resonance?

When drive is running


• Firmware 13 – new parameter for "impedance shaping" of LCL filter.

- When drive is <u>running</u> this allows for <u>significant reduction</u> in BPF currents (cap resonance).
- Investigation required to see how this could affect installation guidance! There is significant improvement in BPF currents which has been confirmed in the field.

Motoring 100% load of the AFE*

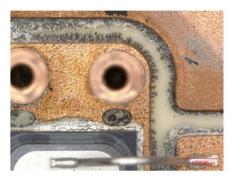
Regen 100% load of the AFE*

What if I follow guidance and there is still cap resonance?

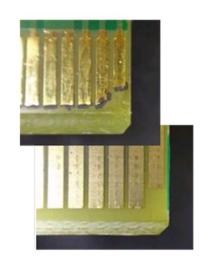
TotalFORCE Control Features

When drive is not running

- Use energy pause to remove the LCL filter from the power circuit when the drive is idle.
 - Requires Auxiliary power see <u>750-RM100</u> chapter 2 for more information.

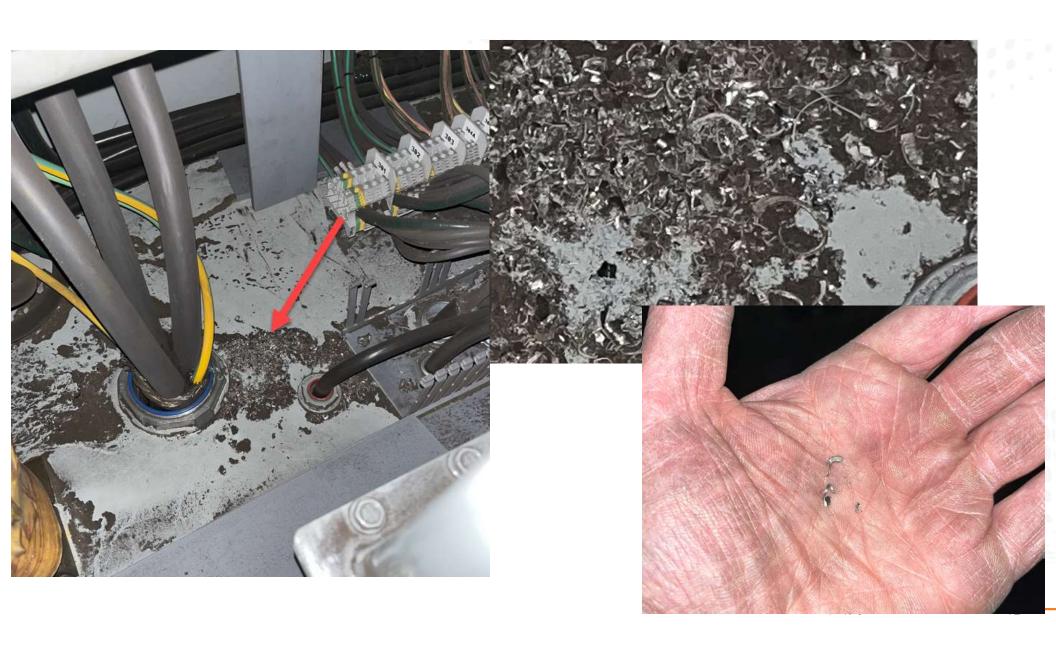

Energy Pause Function

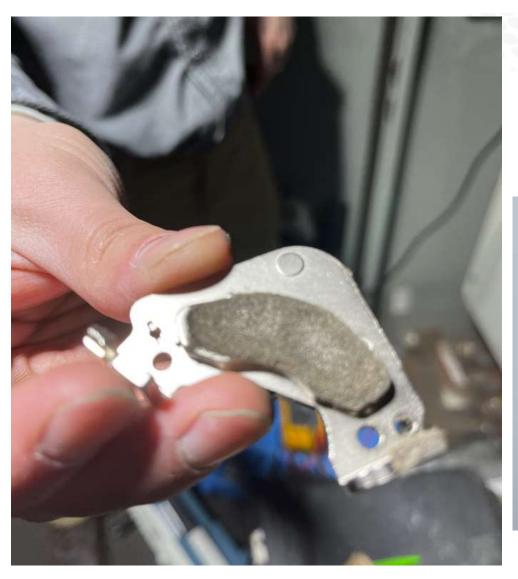
The Energy Pause function sends the drive or bus supply to and from a lowenergy state on command. This function saves energy, reduces wear on parts, and reduces fan noise.


Components that save energy:

- LCL filter and line side converter heatsink fans
- · Balancing resistors
- Power module power supplies
- · LCL filter module inductors
- Or Run the active converter whenever the AFE is powered.
- Remember, the drive will counteract harmonics when running.

AC Drive is Reliable and Dependable When Protected. Protect AC Drive From the Atmosphere/Climate Conditions:





Magnetic dust found inside drive enclosure

DigiKey Part Number SCP760-ND Manufacturer SCS Manufacturer Product Number 497AJH Description VACUUM HEPA 120VAC ESD SAFE Manufacturer Standard Lead Time 2 Weeks **Customer Reference** Image shown is a representation only. Exact specifications should be obtained from the product data sheet. Electronics Vacuum 120VAC With 7 ft Hose, 8 ft Cord, HEPA **Detailed Description** Filter, Nozzle, Strap ESD Safe

497AJH

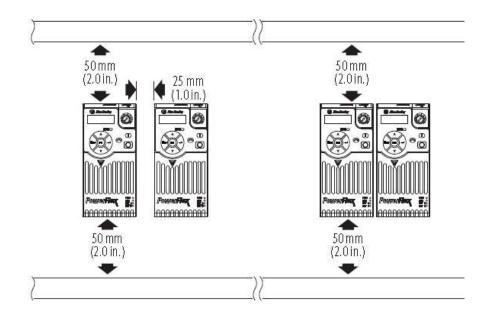
Figure 25: ESD safe vacuum for vacuuming boards and cabinet https://www.digikey.com/en/products/detail/scs/497AJH/9169375

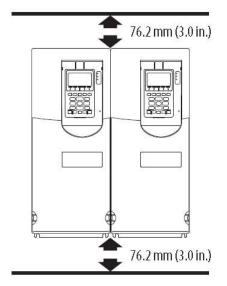
Datasheet

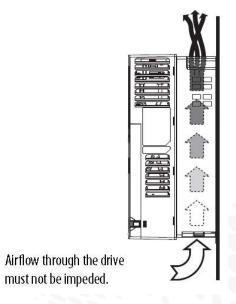
Datasheet

Air Handling Units and Air Conditioners

Pictures from Customer Sites







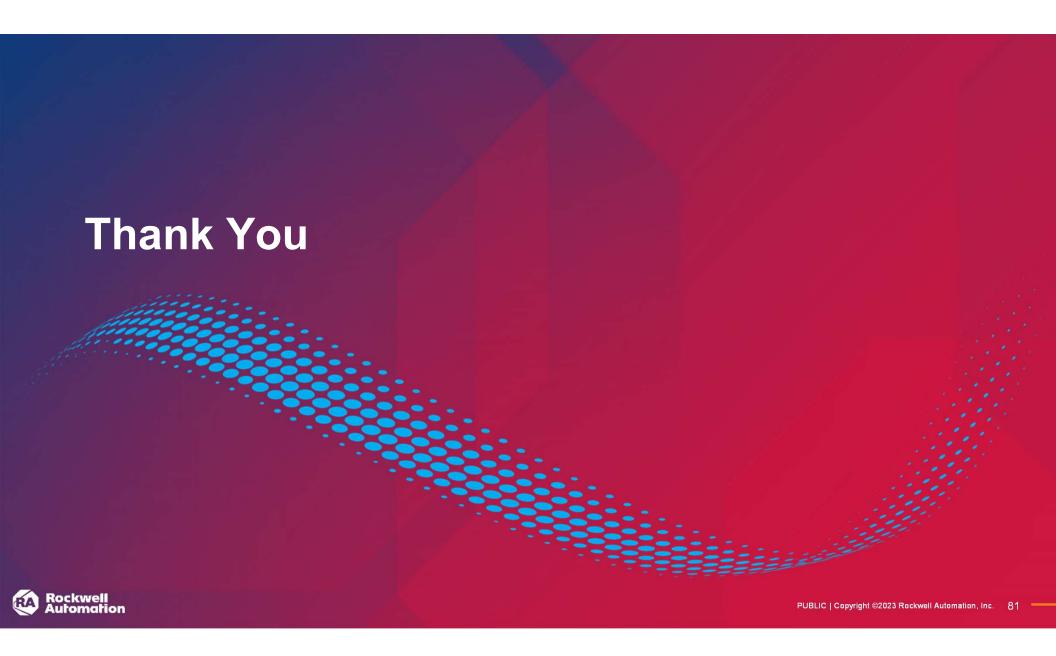
AC Drive is Reliable and Dependable When Protected. Protect AC Drive From the Atmosphere/Climate Conditions:

Pictures from a customer site

AC Drive is Reliable and Dependable When Protected. Protect AC Drive From the Atmosphere/Climate Conditions:

Pollution Degree Ratings According to EN 61800-5-1

Pollution Degree	Description
1	No pollution or only dry, non-conductive pollution occurs. The pollution has no influence.
2	Normally, only non-conductive pollution occurs. Occasionally, a temporary conductivity that is caused by condensation is to be expected, when the drive is out of operation.
3	Conductive pollution or dry non-conductive pollution occurs, which becomes conductive due to condensation, which is to be expected.
4	The pollution generates persistent conductivity that is caused, for example, by conductive dust or rain or snow.


<u> </u>		11 41	
Surrounding	environment	nallutian	dearee
Currounding	CHVIIOIIIIICH	ponduon	acgree

Pollution Degree 1 and 2 Pollution Degree 3 and 4

All enclosures acceptable Enclosure that meets IP54, NEMA/UL Type 12 required

AC Drive is Reliable and Dependable When Protected. Protect AC Drive From the Atmosphere/Climate Conditions:

